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Abstract. High order methods for the solution of PDEs expose a trade-
off between computational cost and accuracy on a per degree of freedom
basis. In many cases, the cost increases due to higher arithmetic intensity
while affecting data movement minimally. As architectures tend towards
wider vector instructions and expect higher arithmetic intensities, the
best order for a particular simulation may change.

This study highlights preferred orders by identifying the high order effi-
ciency frontier of the spectral element method implemented in Nek5000
and NekBox: the set of orders and meshes that minimize computa-
tional cost at fixed accuracy. First, we extract Nek’s order-dependent
computational kernels and demonstrate exceptional hardware utilization
by hardware-aware implementations. Then, we perform production-scale
calculations of the nonlinear single mode Rayleigh-Taylor instability on
BlueGene/Q and Cray XC40-based supercomputers to highlight the in-
fluence of the architecture. Accuracy is defined with respect to physi-
cal observables, and computational costs are measured by the core-hour
charge of the entire application. The total number of grid points needed
to achieve a given accuracy is reduced by increasing the polynomial or-
der. On the XC40 and BlueGene/Q, polynomial orders as high as 31 and
15 come at no marginal cost per timestep, respectively. Taken together,
these observations lead to a strong preference for high order discretiza-
tions that use fewer degrees of freedom. From a performance point of
view, we demonstrate up to 60% full application bandwidth utilization
at scale and achieve ~ 1 PFlop/s of compute performance in Nek’s most
flop-intense methods.

Keywords: high order, vectorization, spectral element method,
Nek5000
1 Introduction

The solution of partial differential equations (PDEs) is a core problem in HPC,
with particular application to computational materials science and fluid dynam-
ics. PDEs are solved by discrete approximation: space and time are sampled and
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the PDEs is translated into a relation on those samples. From a mathematical
point of view, these approximations are characterized by stability conditions and
convergence rates. Schemes which do not satisfy stability conditions usually fail
catastrophically with values that diverge to infinity. The convergence rate de-
scribes the relationship between the resolution and the error. For a characteristic
inter-sample spacing h, a method is of order p if the error goes as hP. High order
methods are schemes with convergence rates higher than third order [21], many
of which expose the order as a user input.

From a computational point of view, the approximations are characterized
by sparsity, locality, and arithmetic intensity. As the order increases, the spar-
sity and locality typically decrease while the arithmetic intensity increases. The
improved convergence rates are ‘paid for’ with more floating point operations
(FLOP), on a per sample basis, while, for a given error tolerance, the num-
ber of samples can be decreased. The relationship between these computational
characteristics and computational cost is complicated by features common to
modern architectures: vector instructions, deep caches, and arithmetic-to-data
movement imbalance.

Here, we explore the relationship between order, accuracy, cost, and architec-
ture. We identify the user-facing properties of high order methods: the accuracy
in observables, time to solution, resource usage, and required scale. We also iden-
tify the user-defined inputs: the physical problem, the order, the total number
of samples, the number of processors, and the computer architectures. To make
the study more practical, we focus on the specific task of optimizing a study
of the single-mode Rayleigh-Taylor instability (smRTI) as a parameter sweep
over Grashof and Prandtl numbers. This is a high throughput use-case, where
the relevant cost is resource usage and scale is fixed with respect to the size of
the problem and assumed to not be a limitation. This leaves us with the ac-
curacy and resource usage versus the order, number of samples, and computer
architectures.

We select the NekBox version of the Nek5000 code (together: Nek), which im-
plements the spectral element method (SEM) [18] with tunable order, is known
to scale to a million ranks [16], and has been used for Rayleigh-Taylor prob-
lems in the past [9]. NekBox takes advantage of static, uniform meshes to solve
the coarse part of the preconditioner with FFTs or DCTs, improving efficiency
and scalability. We extract representative order-dependent kernels from Nek and
analyze their performance on BlueGene/Q and Cray XC40 supercomputers.

We also conduct a set of application benchmarks to measure the cost and
accuracy. The cost is computed in core-hours, in the same way most users are
charged. The accuracy is computed with respect to the smRTT’s bubble height
and mix volume, which are the most common observables studied in the sm-
RTT community. The benchmarks vary the order and total number of samples,
and are conducted on the Mira and Shaheen XC40 supercomputers at Argonne
Leadership Computing Facility (ALCF) and KAUST Supercomputing Labora-
tory (KSL), respectively.
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1.1 Outline

In Sec. 2, we review the SEM as implemented in Nek. In Sec. 3, we introduce
LIBXSMM for hardware-aware implementation of Nek’s performance critical
kernels, and demonstrate their performance in isolation. In Sec. 4, we perform a
convergence/performance study of SEM discretizations for the smRTI problem
and present full-application performance at scale. Sec. 5 concludes with a dis-
cussion of preferred orders on the BlueGene/Q and Cray XC40 supercomputers.

2 Nek’s Computational Core

2.1 Governing equations and time-splitting

Nek5000 and NekBox solve the incompressible Navier—Stokes equations:

ou 1
— 4u-Vu=—-=-Vp+vViu+f V-u=0, (1)
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where u is the flow velocity, p is the fluid density, p is the pressure, v is the
kinematic viscosity, and f consists of user-defined forcing terms. Additionally,
Nek can solve advection-diffusion equations for scalars, such as the temperature

or mass fraction:
0¢;

ot
where ¢; is the scalar value, «; is the diffusivity, and ¢; is a user-defined source
term, each for the ith scalar.
The time derivative is discretized with a backward difference formula (BDF),
within which the nonlinear and forcing terms are extrapolated (EX):
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where M is the mass matrix, C is the convection matrix, K is the stiffness matrix,
D is the gradient matrix, i € {1, 2,3} are the spatial dimension indexes, n is the
time level index, and k is the formal order of accuracy of the BDF/EX scheme.
The pressure is decoupled from the new velocity, u", by taking the divergence:

Kp” = Dz Z ajFinij, (4)
j=1

where F* = M fI" — (Cu;)™, which results in the Poisson pressure equation.
Finally, the pressure is incorporated back into (3):

k
{VKJFAISM} ult = —Dif+j§::1 {ajFi ]+ZJtMu i, (5)
which results in three Helmholtz velocity equations.

These steps are the core of Nek5000 and NekBox: the explicit calculation of
right-hand sides, a Poisson solver for the pressure, (4), and a Helmholtz solver

for the three components of the velocity, (5).
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2.2 Spectral element method

Nek5000 and NekBox implement SEM: a two-level discretization constructed
from tensor products of Gauss-Lobatto-Legendre (GLL) quadrature points
within elements and continuity across elements, forming a mesh. Fields are rep-

resented as
p p P
u(@,y,2) = DY Y igkehi(@)h;()hi(2), (6)

=0 j=0 k=0

where p is the polynomial order of the method, e(z,y,2) is the index of the
element in the mesh, and h;(x) is the ith Lagrange polynomial through the GLL
points of element e. The choice of Lagrange polynomials leads to diagonal mass
matrices and related geometric factors. The spectral basis within each element
enjoys exponential convergence with respect to the polynomial order. GLL points
do not sample space uniformly, so concatenating elements is more effective at
reducing grid spacing than increasing spectral order. Many small elements are
also better able to match complex geometries than fewer larger ones. The spectral
element method is able to satisfy both the demand for geometric flexibility with
quasi-uniform coverage and spectral convergence, but the particular choice of
the spectral order versus the number of elements can be difficult to optimize.

In SEM, operators are written as the product of a local operator and direct
stiffness summation, which enforces continuity at the shared element boundaries.
The local operators are decomposed into tensor products of 1D operators. The
general form of an operator A is:

A= (A x Iy x L)+ Iy x Ay x L) + (I x I, x A,), (7)

where A;, Ay, A, are 1D projections of the operator A and I is the identity ma-
trix. In this way, linear operators from RVXN*N _y RNXNXN can be evaluated
in O(N*) operations instead of O(N®) [20]. This reduces the arithmetic intensity
of operator evaluation in SEM to O(p).

2.3 Computational profile

The spectral element method, as implemented in Nek5000 and NekBox, spends
its time in three computational motifs: sparse communication, vector-vector,
and matrix-matrix. The sparse communication comes from the direct stiffness
summations and the coarse part of the pressure preconditioner. The vector-vector
workload comes from inner products in the solvers and frequent rescaling by
geometric factors, which are shaped like the diagonal mass matrix. The matrix-
matrix workload comes from local operator evaluation.

The direct-stiffness summation is handled by a stand-alone library [11,17]. In
Nek, the pressure solve takes roughly 30% of the run-time, distributed between
operator application, inner products, and the preconditioner. The preconditioner
is multigrid with a local additive Schwarz part and the global coarse part [13].
In NekBox, the coarse part of the pressure preconditioner is solved directly with
FFTs or fast cosine transforms, and typically takes less than 5% of the total
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runtime. Local communication makes up a small portion of NekBox’s run time
at moderate numbers of points per processor, and Nek5000 and NekBox weak
scale effectively to millions of ranks [9].

The efficiency of the vector-vector computation is generally left to the com-
piler, aided by aggressive loop merging in the solvers. For architectures that
support them, the compiler needs help issuing non-temporal stores, which are
performance optimal only if the working set is larger than the last level cache.
These stores are used in parts of the solver and local element evaluation, and
are discussed further in Sec. 3.

Matrix-matrix is the most accessible and performance critical portion of the
workload. In particular, it is the only part of Nek that depends on the order,
holding the total degrees of freedom (DOFs) fixed.

2.4 Order-dependent kernels

There are two matrix-matrix routines that sit inside of the iterative solvers: the
Helmholtz operator and a basis transformation.
The Helmholtz operator is found on the left-hand side of (4) and (5):

Hu= (h1K + hQM)u,
where the special case of ho = 0 is the Poisson operator.

1: procedure LocAL HELMHOLTZ OPERATOR(Hu, u, hi, h2)
2: (Hu)i gk < (Ga)igr * 2o (Ke)iat gk > matrix-multiply size (p?, p, p)

(Hu)i gk += hi(Hu)i gk + haMi j,ui,jk
end procedure

3: for k=0—pdo

4. (Hu)i,j,k += (Gy)iyjyk * Zl(Ky)jylu“,k > matrix—multiply size (p,p7 p)
5: end for

6: (Huw)ijr += (G2)i gk * > (K2 ki, g, > matrix-multiply size (p,p2,p)
7:

8:

G is a constant diagonal matrix derived from geometric terms and subscripts
within parenthesis refer to spatial directions. Matrix sizes are given in BLAS
notation: rows in result, columns in result, inner dimension.

The basis transformation is used to diagonalize the local Poisson operator
in the overlapping Schwarz preconditioner, to restrict and interpolate the solu-
tion and residual in the multigrid preconditioner, and to dealias the convection
operator.

1: procedure TRANSFORM (v, u)

2: Jigke < > (Az)iu ik > matrix-multiply size (p?,p,p)
3: for k=0—pdo

4: Gigk < 2 (Ay)iifirk > matrix-multiply size (p, p, p)
5: end for

6: Vi < 21 (A2) k1905, > matrix-multiply size (p, p?, p)
7: end procedure
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3 Kernel Analysis and Optimization

3.1 Small Matrix Multiplications

The implementation of fast matrix multiplications, i.e., the BLAS library’s
GEMM routines, and dense linear algebra more generally is one of computer
science’s best studied fields. However, large matrices [7] have been the primary
focus and, as a result, vendor-tuned BLAS implementations do not provide op-
timal performance when used for the small GEMMSs in Nek. Several BLAS li-
braries recently introduced so-called batched interfaces to speed-up series of
independent and small multiplications by exploiting parallelism and amortizing
calling overheads [10]. As Nek performs dependent GEMMs within each ele-
ment, batched execution would necessarily be inter-element, inhibiting impor-
tant caching optimization and consuming significantly more memory bandwidth.
Therefore, most of Nek’s computer science related work was devoted on speeding
up small GEMMs [19]. Parts of Nek5000 and the related NekCEM codes have
been independently ported to OpenACC [14,17] to speed-up small GEMMs.

Today, Nek5000 and NekBox ship with a FORTRAN-based matrix-matrix
implementation called mxm_std. By default, mxm_std explicitly defines multi-
ple interfaces corresponding to values of the inner dimension k, and provides
unrolled FORTRAN primitives to the compiler. For IBM’s BlueGene series,
common sizes are manually implemented for best performance in FORTRAN
assembly-intrinsics in mxm_bgqg. Similarly, mxm_std features some special case
optimizations targeting AMD’s Opteron processor, which is used in the United
States’ largest system, Titan, at Oak Ridge National Laboratory.

In order to ensure the best possible performance on a range of modern In-
tel processors, featuring different versions of Advance Vector Extensions (AVX)
instructions, we would need to conduct a long and complicated tuning ef-
fort of Nek’s mxm_std akin to the narrow customizations already present. In-
stead, we integrated an early prototype of the LIBXSMM library [1, 8] into
NekBox. LIBXSMM provides highly-optimized single-threaded small matrix-
multiplication routines tuned for all recent Intel processors. It is already suc-
cessfully used in the quantum chemistry application CP2K and high-order finite
element seismic wave equation solver SeisSol [4].

In contrast to mxm_std, LIBXSMM creates a specific kernel implementation
for each small matrix multiplication size and optimizes that kernel specifically
for each set of vector extensions. Each kernel is composed from a-priori known
and best-performing basic blocks. Remainder handling can be performed either
explicitly by application-side padding or internally by slightly less efficient fill-in
basic blocks. We rely on the latter in our integration of LIBXSMM into NekBox.

We leverage LIBXSMM’s experimental just-in-time (JIT) compilation fea-
ture to adapt at runtime to Nek’s spectral order. The JIT feature generates
a small matrix multiplication when its size is requested for the first time and
caches compiled code until the application process is terminated. Additionally,
LIBXSMM can expose the function pointer to the application to bypass future
dispatches when call patterns are simple.
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Listing 1.1: Integration of LIBXSMM into NekBox’s element-local Helmholtz
operator. xmml, xmm2, xmm3 are persistent functions pointers to amortize
LIBXSMM’s dispatching overhead. The 1ibxsmm_dispatch call JITs the re-
quested kernel and populates the persistent function pointers.

logical, save :: init = .false.
type (LIBXSMM_DMM_FUNCTION), save :: xmml, xmm2, xmm3

! lazy initialization of function-private function pointers

! to eliminate dispatching overhead

if (.not. init) then
call libxsmm_dispatch(xmml, nx, ny*nz, nx, 1.0_dp, 0.0_dp)
call libxsmm_dispatch (xmm2, nx, ny, ny, 1.0_dp, 0.0_dp)
call libxsmm_dispatch (xmm3, nx+ny, nz, nz, 1.0_dp, 0.0_dp)
init = .true.

endif

! element-local operation

call libxsmm_call (xmml, C_LOC (wddx), C_LOC(u(l,1,1)), C_LOC(workl)
do iz=1,nz
call libxsmm_call (xmm2, C_LOC(u(l,1,iz)), C_LOC(wddyt), C_LOC(work2(1l,1,iz)))
enddo
call libxsmm_call (xmm3, C_LOC(u(l,1,1)), C_LOC(wddzt), C_LOC (work3)

! element update
au(:,:,:) = hlx ( workl+gx + work2xgy + work3xgz ) + h2xbxu

As an example, we provide the integration of LIBXSMM into NekBox’s local
Helmholtz kernel from Sec. 2.4 in Listing 1.1. This fragment is called within a
loop over elements that is typically long enough to amortize overheads. When
entering the element-local operator for the very first time, we request the re-
quired kernels from the LIBXSMM library, which JIT compiles them internally,
and store the corresponding functions pointers into persistent variables to avoid
dispatching in subsequent calls. Compared to the pseudo-code fragment, cf. 2.4,
we use temporary buffers to separate matrix-matrix from vector-vector opera-
tions, which are performed in one step at the end of each element. The other
common matrix-matrix motifs, basis transformation in particular, are optimized
analogously.

3.2 Enhancing Element Update Performance by Streaming Stores

Caches in Intel processors are designed as write-back caches with read-for-
ownership (RFO). Therefore, writing to a vector in main memory costs two
operations: a load into the cache and the write. Nek performs many such element
updates, cf. Listing 1.1, and long vector updates in linear solvers. Compiling the
Helmholtz element update leads to 5 streams being explicitly read (gx, gy,
gz, b, u), one RFO of au and one write of au. As we stream through all
elements the RFOs are harmful for two reasons: a) they consume bandwidth
and therefore can cause a ~ 16% performance drop; and b) they unnecessarily
occupy cache space and might evict useful data.



8 M. Hutchinson et al.

Listing 1.2: Loop peeling approach including determining the middle section for
which aligned NTS instructions can be used.

void stream_vector_copy( const doublex i_a,
doublex io_c,
const int i_length) {

int 1_n = 0;
int 1_trip_prolog
int 1_trip_stream

0;
0;

/% init the trip counts to determine aligned middle section */
stream_init ( i_length, (size_t)io_c, &l_trip_prolog, &l_trip_stream );

/% run the prologue */

for ( ; 1_n < 1 _trip_prolog; 1 _n++ ) |
io_c[l_n] = i_all_n];

}

/* run the bulk, using streaming stores =*/

for ( ; 1_.n < 1_trip_stream; 1_n+=8 ) {
_mm256_stream_pd( &(io_c[l_n]), _mm256_loadu_pd(&(i_all_n])) )
_mm256_stream_pd( & (io_c[l_n+4]), _mm256_loadu_pd(&(i_al[l_n+4]1)) );

}
/% run the epilogue */
for ( ; 1.n < i_length; 1_n++ ) {
io_c[l_n] = i_al[l_n];
}
}

Since the SSE2 instruction set, the Intel architecture offers so-called non-
temporal stores (NTS). These special instructions write data directly into main
memory without generating RFOs and consuming cache. They operate best when
being executed on vector-length aligned addresses, as cache-line splits are im-
possible. The compiler cannot fulfill the alignment requirement for all orders,
because Nek stores field data compactly, which prohibits semi-automatic gener-
ation of NTS. Therefore, we implemented a FORTRAN interface module with a
C-backend and x86 intrinsics that applies loop-peeling to leverage NTS for the
majority of stores in long, potentially unaligned updates. This module covers
the important kernels of Nek by offering NTS-enhanced primitives to: a) set an
1d-array to a fixed value b) copy an ld-array c¢) multiply component-wise an
1d array, and d) perform the Helmholtz element update, including the special
case of the Poisson operator, ho = 0. For case b), Listing 1.2 depicts Intel AVX2
code.

3.3 Discussion of Performance Reproducers

In order to analyze the performance of LIBXSMM integration and the NTS mod-
ule, we have implemented standalone reproducers of the identified small matrix
multiplication motifs. They are included in the LIBXSMM library as examples
and performance tests. In contrast to NekBox, they are parallelized via OpenMP
instead of MPI, but the performance agrees within 10% of a full NekBox exe-
cution at scale. We used a single node of the Cray XC40 and BlueGene/Q, cf.
Sec. 4.1, for generating performance data in this section.
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Fig. 1: Performance of the Helmholtz reproducer running on a single node of Sha-
heen for different implementation of small matrix multiplications. NTS denotes
the usage of the non-temporal store optimized module.

Fig. 1 compares the performance of Intel MKL 11.2.1, Nek’s own mxm_std,
and LIBXSMM with and without non-temporal stores. For all element sizes,
LIBXSMM offers the best performance, but the difference for orders < 16 are
very small as the execution is heavily memory bandwidth bound. A significant
boost is possible by leveraging NTS: we are able to sustain 100% of the STREAM
triad bandwidth (101.6 GiB/s) up to an element size of 16. For larger problems,
the small GEMM performance is more important. Here LIBXSMM is up to 2x
faster than mxm_std und up to 40% faster than Intel MKL.

In case of very low orders the benefit of NTS is greater than 16%, which we
attribute to NTS avoiding cache pollution. For medium sized orders we exactly
see the expected 16%, and large problems have additional bandwidth available
such that RFOs are less harmful.

The performance numbers for the basis transformation on Shaheen are com-
parable to the Helmholtz operator and therefore not plotted. To summarize
them, LIBXSMM-based GEMMSs are the fastest and, due to higher computa-
tional demand, NTS are only important of for very small 1d sizes. LIBXSMM
is able to achieve 50% of maximum floating-point performance for moderate or-
ders. LIBXSMM ranges from 4x faster than mxm_std and Intel MKL at the
smallest order to 40% faster at the largest.

The performance of the Helmholtz kernel is representative of the basis trans-
formations kernel on Mira as well. To compare with Shaheen, Fig. 2 repeats the
Helmholtz operator reproducer experiment on a single node of Mira. IBM ESSL
version 5.1.1 is used as the vendor library in place of Intel MKL. In place of
LIBXSMM, mxm_bgqg, which features QPX SIMD instructions, is used for the
sizes that it supports. When no QPX implementation is available, mxm_bgq falls
back to mxm_std. Up to element size 16, Nek’s mxm_std and mxm_bgq libraries
are a better choice compared to IBM ESSL. For larger element sizes (except
22 and 24) the performance is comparable. However, the fraction of available
bandwidth used is significantly worse than on Shaheen. Even at high element
sizes, Shaheen is at 80% bandwidth utilization with LIBXSMM and 50% with-
out, whereas Mira runs at 17%. The relative efficacy of mxm_bgqg on Mira, where
available, highlights the strength of LIBXSMM: the ability to automatically issue
the best available vector instructions at any size.
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Fig. 2: Performance of the Helmholtz operator reproducer running on a single
node of Mira for different implementation of small matrix multiplications.

Fig. 3 depicts corresponding performance numbers for the basis transforma-
tion reproducer in three use cases: a) unitary transformation from element size
to element size, b) prolongation/dealiasing from 1d size to (3/2) the element size,
and c) restriction/aliasing from 1d size to (2/3) the element size. Note that the
(3/2) factor implies some dimensions are significantly larger then the element
size shown on the x-axis.

As with the Helmholtz reproducer, the LIBXSMM-based executions are the
fastest and due to higher computational demand; N'TS are only important of for
very small 1d sizes. LIBXSMM is able to achieve 50% of maximum floating-point
performance for medium sized orders In direct comparison to mxm_std and Intel
MKL, the speed-up of LIBXSMM varies between close to 4Xx at very small order
to roughly 40% at very large order.

4 Scenarios and Performance

4.1 Architectures

We run on two supercomputers: Mira at the ALCF and Shaheen XC40 at the
KSL. Mira is a IBM BlueGene/Q with 49,152 nodes. Each node has 16 cores with
4 hardware threads per core and can support 204.8 GFLOPS and 30 GiB/s main
memory bandwidth, measured by [15]. Shaheen is a Cray XC40 with 6144 nodes.
Each node has two Intel® Xeon® E5-2698v3 (code-named Haswell) processors
with 16 cores each and can support around 1177.6 GFLOPS and 101.6 GiB/s
main memory bandwidth, measured by [15]. Shaheen’s cores therefore have 2.9x
the floating point and 1.7x the memory bandwidth of Mira’s BlueGene/Q cores.

4.2 Single mode Rayleigh-Taylor instability

The Rayleigh-Taylor instability (RTT) occurs when the pressure and density
gradients point in opposite directions, as in the canonical case of a heavy fluid
supported on top of a lighter fluid in a gravitational field. The Rayleigh-Taylor
growth rate is an increasing function of the wave-number, up to a viscous cutoff,
making the smallest scales grow fastest. Because energy is pumped into the
system at small scales, the RTT is notoriously difficult to model numerically [5].
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Fig. 3: Performance of the basis transformation reproducers using different im-
plementation for the small matrix multiplications. NT'S denotes the usage of the
aforementioned non-temporal store optimized module. The top plot shows the
diagonalization in the local Poisson operator, the middle one the prolongation
and the bottom one the restriction case.

The RTT describes how the dense fluid is pushed through and mixes with
lighter fluid. This dynamic mixing process is essential to the behavior of flows
found in exploding stars [3], the oceans and atmosphere [12], and inertial con-
finement fusion. In the latter case, dense plastic ablator is pushed into and mixed
with the lighter hydrogen fuel. The carbon-laden ablator radiates energy much
more quickly than the fuel, reducing hot-spot temperature and preventing igni-
tion. The study of the RTI and related mixing is a priority research direction for
inertial confinement fusion performance [6].

Nek5000 and NekBox [2] are used to model the incompressible Boussinesq
equations, which approximate the RTT at low density contrasts:

0
a—ItL+u~Vu:—Vp+uV2u+§T (8)
oT
E—i—u-VT:aVQT (9)

V-u=0, (10)
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where T is a scalar that can be interpreted as a temperature, in which case a
is the thermal diffusivity and g is the product of the gravitational acceleration
and the thermal expansion coefficient.

The single-mode Rayleigh-Taylor instability (smRTI) restricts the initial per-
turbation of the interface to be sinusoidal, and is generally considered in periodic
span-wise boundary conditions:

z + ag cos(2mx/N) cos(2my/\)
6 b

T(x,y,2,0) =A-erf (11)
where A € (0,1] is the Atwood number, A is the wavelength, ag is the initial
interface amplitude, and ¢ is the initial interface width. This simplification allows

the problem to be defined by only two dimensionless numbers in the limit of
ag,d — 0, the Grashof number (Gr) and the Prandtl number (Pr):

AN

Gr
2

Pr =

v
, o (12)

Even under these simplifications, the late-time behavior is not well under-
stood. Experiments are prone to spurious low-wavelength modes that dominate
the dynamics at late times, while the cost of direct numerical simulations is
quadratic with the domain’s aspect ratio.

It would be valuable to systematically sample the Grashof-Prandtl space with
high fidelity simulations at late-time/high-aspect-ratio to better inform experi-
mental design and model development. Such a study would be very expensive,
so it is important to select a cost-minimizing strategy.

We take this problem, the selection of a cost-minimizing strategy for the late-
time smRT1I, as our motivation. In addition to the isolated reproducers discussed
in Sec. 3, we present NekBox application benchmarks based on smRTI with
typical Nek settings. The aim of these benchmarks is to identify minimum cost
discretizations that attain a given accuracy.

The benchmarks are conducted for combinations of the element size
taken from {4,6,8,10,12,14,16,32} and span-wise mesh size taken from
{2,4,8,12,16,24,32,48,64,96,128}. The total number of points ranges from
around 1 million to 4 billion. The problem is weak-scaled: the number of el-
ements per rank is chosen as to consume approximately half of the available
main memory, or around 16k and 262k points per rank on Mira and Shaheen,
respectively. The problems are constrained to fill an integer number of nodes,
which puts a lower bound on the mesh size and excludes some cases that would
partially fill nodes. The domain is a box with dimension [0, .5]? x [—1, 1], and the
elements are cubic. The span-wise boundary conditions are symmetric and the
vertical boundary conditions are no-slip in velocity and no-flux (insulating) in
the scalar. The initial condition is stationary in velocity with a scalar given by
(11), the Grashof number is 17,324, and the Prandtl number is 1. The timestep
is calculated based on a Courant number of 0.4, which scales linearly with the
number of elements and quadratically with the size of the element due to the
spacing of the GLL nodes. The Courant condition is defined only in a linear
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limit, so during the initial exponential growth regime the Courant number is
computed using the stagnation velocity, 1/ Ag/(w\).

Outputs are written at regular intervals in simulated time, constant across
problem sizes. Therefore, smaller problems perform a greater share of I/0, as is
the common case in CFD. Nek5000 and NekBox write separate files for separate
ranks. The number of ranks that participate in I/O is a fixed proportion of the
total number of ranks.

(a) Scalar (b) Vertical velocity (¢) Vorticity (d) Pressure

Fig.4: Scalar, velocity, vorticity, and pressure fields at end of simulation.

Slices of the end of the simulation are shown in Fig. 4. Two observables are
calculated in post-processing: the bubble height and the miz volume:

stup{zzlgiyn T(x,y,z)<T0}, @=/|T—T0|dV, (13)
where T} is the volumetric average temperature. These two observables are com-
mon to smRTI models and lie at opposite ends of the locality spectrum: the
bubble height is defined by the neighborhood of the bubble tip while the mix
volume is an integral over the entire domain. The root mean square error in each
observable is computed over all the outputs.

4.3 Time to accuracy

For each simulation, we compute the FLOP rate and aggregate memory band-
width. NekBox includes explicit FLOP and memory operation counters and
timers in the most performance critical regions of the code. Memory opera-
tions are counted assuming single-element intermediate data stays in cache, and
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Fig.5: Weak scaling of bandwidth on Shaheen and Mira. In (a), Circles and
crosses indicate memory bandwidth per core on Shaheen and Mira, respectively,
vs the problem size labeled by element size. In (b), the ratio of the bandwidths
are shown vs element size for common discretizations. The solid line indicates
ratio of STREAM memory bandwidth.

therefore does not contribute to main memory bandwidth. These counters are
consistent with those used in the reproducers. The whole application is not cov-
ered, so the counters can be considered lower bounds on the whole-application
performance.

The attained memory bandwidth per core on Shaheen and Mira are plotted
in Fig. 5. On Shaheen, bandwidth is constant with respect to the number of
elements and a weak function of the order, ranging from around 65 to 75% of
peak. On Mira, bandwidth is still constant with respect to the scale, but varies
more strongly with polynomial order, especially at orders greater than 16 and
those not divisible by 4. It ranges from around 15 to 50% of peak. The mxm_bgqg
library, discussed in Sec. 3, is used, resulting in performance spikes at QPX-
supported orders, e.g. 8.

The accuracy is plotted versus the computational cost for a variety of dis-
cretizations in Fig. 6. The error in bubble height and mix volume are strongly cor-
related, so only the error in the height is plotted. As expected, doubling the the
spectral order while keeping the number of elements fixed, e.g. (4,32) — (8,32)
and (8,8) — (16, 8), significantly improves the accuracy, but also increases the
cost by 16-32x. The first 8x is due to an increase in the number of degrees of
freedom, the next 2x is due to the shorter timestep, and, when compute-bound,
the final 2x is due to an increase in the floating point load. Doubling the spec-
tral order while keeping the number of points fixed, e.g. (16,8) — (32,4) and
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Fig.6: Error with respect to bubble height, (13), vs. the computational cost, in
processor hours, on Shaheen (a) and Mira (b). Points are labeled as (p + 1, ¢€)
pairs, where p is the order, p + 1 is the element size, and e is the number of
elements in one dimension. More runs are present on Mira due to the smaller
BGQ nodes evenly dividing more problem sizes.

(8,8) — (16,4), increases the cost by 2-4x, as expected, but also improves the
accuracy. Doubling the spectral order while halving the number of points in each
direction, e.g. (8,32) — (16,8) and (14,16) — (28,4), reduces the cost by 4-8x
while maintaining or slightly improving the accuracy.

We define the efficiency frontier as the set of discretizations that minimize
computational cost for fixed accuracy or, equivalently, minimize error given fixed
computational cost. The efficiency frontiers on Mira and Shaheen are comprised
of discretizations with very high orders, given our constraints. The most efficient
schemes are those with element size greater than 16, except for very low accuracy
simulations.

4.4 Whole application performance

To date, our largest calculation on Shaheen occupied 131,072 cores as depicted
in Fig. 7 for element size 32. NekBox achieved 197 TiB/s memory bandwidth
and 290 TFLOPS in weak scaling. This corresponds to 47.8% of peak mem-
ory bandwidth sustained over the entire application at high order. In case of
strong scaling these numbers are slightly lower with 130 TiB/s and 195 TFLOPS.
However, the Helmholtz operator, as the most compute intense sub-routine, is
able to achieve up to 0.94 PFLOPS in strong and 1.33 PFLOPS in weak-scaling
on 131,072 cores. We also consider 65,536 cores runs, occupying 1/3 of Sha-
heen. These runs achieved at least 135.6 TiB/s memory bandwidth and 184.9
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Fig. 7: Strong scaling (left) and weak scaling (right) on Shaheen on up to 131,072
cores (2/3) of the full 7 PFLOPS machine using an element size of 32. To avoid
log plots we show per-core performance.

TFLOPS. This corresponds to 67.5% of peak memory bandwidth sustained over
the entire application at high order. Finally, extrapolating to full machine, Nek-
Box would reach at least 406.8 TiB/s and 554.6 TFLOPS. At the same scale,
a weak scaling of the Helmholtz operator would result into 1.9 PFLOPS out of
7PFLOPS performance.

5 Conclusion

NekBox enhanced by LIBXSMM generated kernels on Shaheen XC40 executes
the performance critical, order-dependent components of Nek above 80% of peak
memory bandwidth. For comparison, compiled code on the BlueGene/Q archi-
tecture is only able to reach 50% of peak and for many polynomial orders oper-
ates around 30%. Therefore, despite only having 1.7x the memory bandwidth,
Shaheen’s cores outperform Mira’s cores by 3-6x with the greatest improvement
at high order and for sizes that are not divisible by the vector width, 4 in this
case. NekBox is able to scale 67.5% utilization rates to 65,536 cores on Shaheen.

For the smRTI, the efficiency frontier, i.e. the discretizations that minimize
cost given accuracy or minimize error given cost, have polynomial orders between
15 and 31, higher than are typically used in spectral element schemes. The
presence of high order schemes on the efficiency frontier can be understood by the
combination of two effects. First, the increase in arithmetic intensity is hidden
by the imbalance between floating point capabilities and memory bandwidth,
providing high order at no marginal cost on a per time-step basis. Second, higher
order schemes with fewer degrees are freedom are more accurate than lower
order schemes with more degrees of freedom. It is generally possible to maintain
accuracy by increasing the order while decreasing the total degrees of freedom,
and, consequently the total cost.

Generally the order should be chosen to be at least large enough to saturate
the floating point capabilities of the architecture in the order-dependent kernels,
because increasing the order to that point significantly improves accuracy at no
marginal computational cost. On BlueGene/Q, this mark is polynomial order
15, while on the Cray XC40 it is 31.

For many problems and observables, the calculation may additionally benefit
from increasing the order until just before single-element operations spill out of
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cache. The improvement in accuracy is exponential with the polynomial order,
so the degrees of freedom needed to achieve a level of accuracy can decrease. The
increase in the cost with respect to order for compute-bound orders is linear, so
if the decrease in the number of degrees of freedom needed is super-linear, the
net result is a less expensive calculation. Usage in this way, which exceeds the
largest element sizes that we ran on Shaheen, warrants further study.

More generally, high order methods with high locality, the structured ele-
ments in SEM being only one example, are able to take advantage of wider
vectors and higher compute to memory ratios to reach higher order at little
to no marginal cost on a per-step basis. However, increases in cost can come in
through coupling to the choice of time-step and an increase in iteration counts in
the solvers. These increases can often be mitigated by reducing the total number
of degrees of freedom, relative to an equivalent lower-order calculation.

The next generation will include supercomputers featuring the Xeon Phi
processor code-named Knights Landing, e.g., Cori at NERSC with more than 20
PFLOPS. As the architecture continues to evolve, we can see that updated node-
level optimizations and order-sensitivity studies are key to helping scientists
continue to perform large scale, high efficiency simulations.
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